

Tetrahedron 59 (2003) 4077–4083

TETRAHEDRON

Conformational analysis of cyclic phosphates derived from $5-C$ substituted 1,2-O-isopropylidene- α -D-xylofuranose derivatives

Fernando Sartillo-Piscil,^{a,*} Silvano Cruz,^a Mario Sánchez,^b Herbert Höpfl,^b Cecilia Anaya de Parrodi^c and Leticia Quintero^{a,*}

acentro de Investigación de la Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, 14 sur esq san claudio, San Manuel, 72570 Puebla, Mexico
^bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62210,

Cuernavaca, Mexico
Departamento de Química y Biología, Universidad de las Americas-Puebla, 72820, Santa Maria Catarina Mártir, Puebla, Mexico[.]

Received 26 February 2003; revised 9 April 2003; accepted 9 April 2003

Abstract—Twelve 2-phenoxy-2-oxo-1,3,2-dioxaphosphorinanes fused with a 1,2-O-isopropylidene- α -D-xylofuranose moiety in cis orientation and substituted at the C' 5 position were prepared in two steps from commercially available diacetone- α -D-glucose. Their conformations, and configurations were determined by ¹H and ³¹P NMR and X-ray crystallographic techniques. Both, chair–twisted–chair and chair–boat equilibria were observed in solution. We observed that the strong anisotropic shielding effect of the benzene ring in the phenoxy group generates an upfield shift of the $H¹$ hydrogen atom, when the cyclic phosphates adopt a boat conformation. This is due to a relative cis-orientation of the P-phenoxy group and the H^1 proton of the 1,2-O-isopropylidene- α -D-xylofuranose moiety. Therefore, the configuration of the phosphorus center $(S_P \text{ or } R_P)$ can be determined by ¹H NMR spectroscopy. Interestingly, the crystal structure of one of the cyclic phosphates exhibits two independent molecules in the asymmetric unit, one with a chair and the other one with a boat conformation. $©$ 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

During the last three decades, the conformational analysis of 2-phenoxy-2-oxo-1,3,2-dioxaphosphorinanes and similar compounds has been a field of intense research.^{[1](#page-6-0)} Cyclic nucleoside $3^{\prime}, 5^{\prime}$ -monophosphates such as cAMP and cGMP play an important role in the cell metabolism, for which the conformational analysis of similar cyclic phosphates is relevant, since the interaction with the enzyme active site occurs probably through the pseudoaxial phosphoryl oxygen of the twist conformer. $2,3$ In this regard Bentrude et al., have extensively studied the conformation of different cis and trans fused cyclic phosphates by NMR and crystallographic techniques.[1](#page-6-0)

Herein, we report the synthesis, configurational, and conformational analyses of various novel model compounds for the above mentioned nucleoside $3^{\prime}, 5^{\prime}$ -monophosphates, in which a considerable strain is imposed by the presence of a cisoid-like fused bicyclic structure bearing methyl, phenyl and vinyl groups attached at the C'5 position of the $1,2$ -Oisopropylidene- α -D-xylofuranose moiety.

2. Results and discussions

The cyclic phosphates $4a-c$, $4a'-c'$, $5a-c$ and $5a'-c'$ were synthesized in two steps with acceptable overall yields of 40–70% ([Scheme 1\)](#page-1-0), whereby the 1,3-diol precursors 2a–c and 3a–c were obtained in yields between 42 and 73%, when applying a sequential hydrolysis–oxidation and Grignard reagent addition protocol (in one pot) to commercially available $1,2,5,6$ -O-diisopropylidene- α -Dxylofuranose [\(Table 1](#page-1-0)). In these reactions the lowest yield was obtained with the vinyl and the highest one with the methyl Grignard reagent (entries 1 and 3, [Table 1\)](#page-1-0). The diastereomeric pairs of the 1,3-diols could be separated efficiently by column chromatography.

The phosphorylation of the diols was carried out using phenyldichlorophosphate and triethylamine in CH_2Cl_2 , affording, $4a-c$, $4a'-c'$, $5a-c$, $5a'-c'$ with high yield $(90-94\%$, see the [Scheme 1\)](#page-1-0). After the successful separation of all diastereomeric pairs by column chromatography, conformational and configurational analyses were performed using standard NMR methods together with X-ray structure determinations in the case of $4a$ and $5b'$. The specific ¹H and ³¹P NMR chemical shifts as well as the $\overline{^3J_{\text{HH}}}$, $\overline{^3J_{\text{HP}}}$ and $\overline{^4J_{\text{HP}}}$ coupling constants of the cyclic phosphates are summarized in [Tables 2 and 3.](#page-1-0)

Keywords: conformation; cyclic phosphates; anisotropic shielding effect of the benzene ring; conformational analysis.

^{*} Corresponding author. Tel.: +52-2222-295500x7387; fax: +52-2222-454293; e-mail: fsarpis@siu.buap.mx, lquinter@siu.buap.mx.

^{0040–4020/03/\$ -} see front matter © 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0040-4020(03)00582-9

Scheme 1. Two step syntheses of the cyclic phosphates $4a-c$, $4a'-c'$, $5a-c$ and $5a'-c'$.

Table 1. Preparation of the 1,3-diol precursors 2a–c and 3a–c

Entry	RMgX	Products	Yield ^a	Reference
1 ^b	CH_{3} -	2a and 3a $(2:1)$	73	
$2^{\rm b}$	$Ph-$	2b and $3b(1:4)$	70	
3°	$CH2=CH-$	2c and 3c $(1:1)$	42.	

a Yields correspond to the mixture of diaster
eomers. b RMgBr. c RMgCl.

Examination of the $31P$ NMR data reveals that the signal of the cyclic phosphate 4a is centered at higher field than the one of its diastereomer congener $4a'$ (-16.2 and -15.0 ppm, respectively). This suggests that the phenoxy group of 4a is axially oriented (S_P) . The $\frac{3J_{\text{HSP}}}{}$ values for 4a and $4a'$ (${}^{3}J_{\text{H5P}}$ =16.0 Hz for 4a and ${}^{3}J_{\text{H5P}}$ =15.0 Hz for 4a', Table 3) suggest that the methyl group at C' 5 is oriented pseudo-axially in the phosphorinane heterocyclic ring (indicating a non chair conformation in solution). However, a crystallographic study for 4a showed an almost perfect chair conformation in the solid-state (see X-ray structure of

Table 2. Chemical ¹H and ³¹P NMR shifts of the cyclic phosphates $4a-c$, $4a' - c'$, $5a - c$ and $5a' - c'$

Compound	H^1	H^2	H^3	H ⁴	H^5	^{31}P
4a	6.03	4.72	4.90	4.09	4.91	-16.2
4a'	5.69	4.64	4.99	4.18	4.75	-15.0
5a	6.02	4.68	4.82	4.10	4.86	-15.5
$5a^{\prime a}$	5.56	4.16	4.65	3.56	4.43	-12.6
4 _b	6.01	4.78	4.95	4.53	5.63	-13.8
4 ^b	6.15	4.83	4.92	4.63	5.68	-13.0
5b	6.02	4.73	5.01	4.40	5.75	-15.2
5 _b	5.60	4.61	5.12	4.42	5.84	-12.9
4c	6.08	4.75	4.92	4.25	5.25	-16.4
4c'	5.79	4.69	4.97	4.32	5.15	-15.7
5c	6.03	4.66	4.89	4.24	5.17	-15.6
5c'	5.62	4.57	5.00	4.24	5.27	-13.1

All spectra were recorded at frequencies of 400 and 161.8 MHz for proton and phosphorus, respectively. Chemical shifts (δ) are given in ppm. ^a Recorded in C₆D₆ to get overlapping signals separated.

4a in Fig. 1). Thus, a chair–twist equilibrium in solution and a permanent chair conformation in solid-state for 4a can be proposed, as shown in [Scheme 2.](#page-2-0) In contrast to the corresponding unsubstituted cyclic phosphates derived

Table 3. ${}^{3}J_{\text{HH}}$, ${}^{3}J_{\text{HP}}$ and ${}^{4}J_{\text{HP}}$ coupling constants of the cyclic phosphates $4a-c$, $4a'-c'$, $5a-c$ and $5a'-c'$

Compound	$^4J_{\rm HP}$	$^3J_{\rm H5aP}$	$^3J_{\rm H5eP}$	$^3J_{\rm H5aH4}$	$^{3}J_{\rm H5eH4}$
4a			16.0		2.2
4a'			15.0		2.5
	2.9	\bf{a}		2.2	
$\frac{5a}{5a}$	2.5	$\mathbf c$		$\mathbf c$	
4 _b			10.2		3.6
4 ^b			11.4		4.0
5b		\bf{a}		1.6	
5 _b		\bf{a}		2.3	
4c			18.3		2.2
4c'			15.2		2.9
5c	1.8	\bf{a}		2.2	
5c'	1.8	\bf{a}		2.2	

¹H spectra were recorded at 400 MHz in CDCl₃.

^a Peak broadened by J_{HP} (<1.0 Hz).

^b Recorded in C₆D₆ to get overlapping signals separated. ^c No coupling constants observed, J_{HP} (<0.5 Hz).

Figure 1. Perspective view of the molecular structure of 4a in the solidstate, showing a chair conformation for the 1,3,2-dioxaphosphorinane heterocycle.

Scheme 2. Chair–twist conformational equilibrium of 4a in solution.

from 1,2-*O*-isopropylidene- α -D-ribo and xylofuranoses (i.e. des-methyl, phenyl and vinyl $4a-c$) in which the vicinal coupling constants ${}^{3}J_{\rm H5P}$ and crystallographic studies proved a chair form both in solution and the solid-state.[4](#page-6-0)

It appears that the 1,3-syn diaxial orientation of the methyl and phenoxy groups does not affect significantly the chair conformation, at least in the solid-state. In this regard, a similar conformation has been previously reported in solution for cis-4-methyl-2-oxo-2-phenoxy-1,3,2-dioxaphosphorinane $8a$ and cis-4-benzyl-2-oxo-2-phenoxy-1,3,2-dioxaphosphorinane.^{[8b](#page-6-0)} As already mentioned, the vicinal ${}^{3}J_{\text{H5P}}$ coupling constants of 15 Hz suggest a non chair conformation also for $4a'$ in solution. A detailed analysis of the chemical shift displacements of the protons in the furanose ring of this compound reveals that H^1 is exposed to a shielding effect $(6.03$ ppm for $4a$ and 5.69 ppm for $4a'$). From the inspection of Dreiding models and anomeric effect considerations,^{[9](#page-6-0)} it might be suggested that $4a'$ adopts a boat conformation with the pseudoaxial phenoxy group in proximity to H^1 (see Scheme 3).

The above discussion can be applied also to the other pair of diastereomeric cyclic phosphates $5a$ and $5a'$ with the methyl group at C' 5 in equatorial position. The w-long range coupling constants ${}^4J_{\text{MeP}}$ with values of 2.9 and 2.5 Hz for 5a and 5a', respectively, and the small vicinal coupling constants, ${}^{3}J_{\text{HP}}$ <1 and ${}^{3}J_{\text{HP}}$ <0.5 for 5a and 5a⁷, respectively, do confirm the absolute stereochemistry at $C'5(S)$ $C'5(S)$ $C'5(S)$ ⁵ As for 4a', in the case of 5a' having the phenoxy group in equatorial or pseudoaxial orientation (R_P) , a shielding effect is observed for $H¹$ (6.08 ppm for 5a and 5.58 ppm for $5a'$).

At this stage, we realized that a simple ¹H NMR spectrum analysis might be sufficient to determine which conformational equilibrium is present in solution for these model compounds. In order to confirm our assumption, we synthesized and analysed compounds $4b$, $4b'$, $5\overline{b}$ and $5b'$ $(R=Ph)$. The ¹H NMR data of the diastereomeric pair of cyclic phosphates $4b$ and $4b'$, which were derived from the minor diol $\hat{2}b$, did not show any shielding effect for H^1 , but

Scheme 3. Chair–boat equilibrium of $4a'$ in solution.

Figure 2. Perspective view of the molecular structure of $5b'$ in the chair conformation.

instead, a slight downfield shift was noted for the $H¹$ hydrogen of $4b'$ (6.15 ppm). The configuration of the phosphorus atoms was determined on the basis of the ^{31}P NMR spectra, using the criterion that signals, which are upfield shifted, can be attributed to phosphorinanes having their phenoxy group axially oriented (compare: $\delta = -13.8$) for $4\overline{b}$ and -13.0 for $4\overline{b}$).^{[10](#page-6-0)} For the other diasteromeric phosphate pair 5b and $5b'$, $5b'$ did show again the shielding effect for H^1 (5.60 ppm and ${}^3J_{HP}$ <1 Hz for 5b' (R_P); 6.02 ppm and $\frac{3J_{HP}}{1 \text{ Hz}}$ for **5b** (S_P)). Thus, based on the above arguments, the cyclic phosphate **5b** should present a chair–twist equilibrium and $5b'$ a chair–boat equilibrium. In contrast, for both 4b and $4b'$ a chair–twist equilibrium can be deduced.

Although, in similar compounds the existence of a boat conformation has been established, $1b$, 11 these conformations differ from the one shown in Scheme 3.

Fortunately, a crystallographic study of $5b'$ showed that our prediction for the dynamic behaviour in solution was correct. Nevertheless, this compound crystallised with two independent molecules per asymmetric unit, of which one has a chair conformation (Fig. 2) and the other one a boat conformation (Fig. 3).

It should be mentioned that this is the first case, in which the chair and boat conformations of a 2-phenoxy-2-oxo-1,3,2 dioxaphosphorinane involved in a dynamic equilibrium in solution, have been trapped simultaneously the solid-state.

Figure 3. Perspective view of the molecular structure of $5b'$ in the boat conformation.

Two further related structures with two independent molecules in the asymmetric unit have been reported: in the first case two 1,3,2-dioxaphosphorinane molecules are present in the asymmetric unit, however, both have a boat conformation.^{[12a](#page-6-0)} In the second case reported for a 2-thio-1,3,2-dioxaphosphorinane, one had a half-chair confor-mation and the other one a twisted-boat conformation.^{[12b](#page-6-0)}

Thus, both molecules trapped into the asymmetric unit exhibited a ready equilibrium between the chair and the boat forms in solution. This very short gap in energy between both conformations has been shown depends on the temperature, and the mole fraction of the nonchair conformer is increased upon lowering the temperature^{[4,11b](#page-6-0)} Therefore, we selected compound $5b'$ for a variable temperature NMR experiment in the range of 213–303 K $(in CD₂Cl₂)$. During this experiment a gradual change of the upfield shift of H^1 from 5.60 ppm at 303 K to 5.31 ppm at 203 K was observed, indicating that the population of the boat conformer is increased $(H¹$ and the phenoxy group spend more time closely). These results are in agreement with the VT NMR experiments of Hermans et al., even though these authors used different parameters for their conformational analysis (vicinal and geminal coupling constants, ${}^{3}J_{\text{HP}}$ and ${}^{2}J_{\text{HH}}$, respectively).^{[11b](#page-6-0)}

The reason for the equimolar presence of the chair and boat conformers in the solid-state of $5b'$ may be attributed to intermolecular interactions in the crystal lattice. Indeed, there is an intermolecular hydrogen bonding interaction between the phosphoryl oxygen atom of the molecule in the boat conformation and the $H⁵$ hydrogen atom of the molecule in the chair conformation (Fig. 4). The distance of the P=O–H⁵ interaction is 2.32 \AA , which is significantly shorter than the sum of the van-der-Waals radii between oxygen and hydrogen (2.70 Å) .

It has been suggested, that for a strong enzyme-nucleoside interaction with cyclic nucleoside $3^{\prime}, 5^{\prime}$ -monophosphates to occur, a pseudoaxial orientation of the phosphoryl oxygen atom of the nucleoside is required, which is only possible in a twist conformation[.2](#page-6-0) However, according to the results presented herein, we consider that the boat conformation should be considered as a further appropriate conformation for such an intermolecular interaction.

In an effort to generalize this conformational study, we examined four additional diastereomeric cyclic phosphates,

Figure 4. Intermolecular CH···O interaction between the chair and boat $\frac{1225-550-055}{1225-500-055}$, e-mail. dependences of 5b' in the solid-state. conformers of $5b'$ in the solid-state.

which were derived from diols 2c and 3c. The shielding effects observed for the H¹ hydrogen atoms of $4c'(R_P)$ and $5c'$ (R_P) and the values of the vicinal coupling constants $(5.79 \text{ ppm}, \frac{3}{{J_{HP}}} < 1 \text{ Hz}$ for $4c'$ and $5.62 \text{ ppm}, \frac{3}{{J_{HP}}} < 1 \text{ Hz}$ for $5c^7$ are in agreement with a chair–boat conformation. In the case of $4c$ (S_P) and $5c$ (S_P), their spectroscopic data are consistent with a chair–twist equilibrium, with a high population of the chair conformation for $4c$ ($\frac{3J_{HP}}{18.3 \text{ Hz}}$), see [Tables 2 and 3](#page-1-0).

3. Conclusion

In conclusion, the conformational analysis of cyclic phosphates, which have substituents that may induce a conformational restriction, revealed the existence of very specific conformational equilibria. It could be shown that for the 2-phenoxy-2-oxo-1,3,2-dioxaphosphorinanes studied herein, the spectroscopic evidence for the dynamic equilibria in solution can be obtained not only from the well-studied vicinal coupling constant ${}^{3}J_{\text{HP}}$ and the ${}^{31}P$ NMR chemical shifts, but also from the simple chemical shift of the axially oriented hydrogen atom in the furanose ring.

4. Experimental

4.1. General

Instrumental. NMR studies were carried out on a JEOL Eclipse $+400$ instrument. Standards were TMS (1 H, 13 C) and H_3PO_4 (³¹P). Chemical shifts are stated in parts per million. COSY, HETCOR and NOESY experiments have been carried out in order to assign the ${}^{1}H$ and ${}^{13}C$ spectra completely. High resolution mass spectra $(FAB⁺$ ion mode) were obtained on a Jeol JMS-SX102A equipment (10 kV).

X-Ray crystallography. X-ray diffraction studies of single crystals were performed for $4a$ and $5b'$ on a Bruker Apex diffractometer $(\lambda_{\text{Mo K\alpha}}=0.71069 \text{ Å}, \text{monochromator})$ graphite, $T=293$ K). Absorption corrections were applied. (SADABS); corrections were also made for Lorentz and polarization effects. Solution and refinement: direct methods $(SHELXS-86)^{13}$ $(SHELXS-86)^{13}$ $(SHELXS-86)^{13}$ for structure solution and the SHELXTL^{[14](#page-6-0)} and CRYSTALS^{[15](#page-6-0)} software package for refinement and data output. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were calculated in all cases, using a riding model during the Least-squares refinement. The most important crystallographic data have been summarised in [Table 4](#page-4-0). In the case of compound $5b'$ there are two independent molecules in the asymmetric unit.

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC-200060-200061. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: (+44) 1223-336-033, e-mail: deposit@ccdc.cam.ac.uk, www:

Table 4. Crystallographic data for compounds $4a$ and $5b'$

Crystal data	4a	5 _b	
Formula Crystal size $(mm3)$ MW $(g \text{ mol}^{-1})$ Space group	$C_{15}H_{19}O_7P$ $0.11 \times 0.17 \times 0.33$ 342.27 $P2_1$	$C_{20}H_{21}O_7P$ $0.10 \times 0.24 \times 0.27$ 404.34 $P2_12_12_1$	
Cell parameters $a(\AA)$ $b(\AA)$ c(A) β (°) $V(A^3)$ Z μ (mm ⁻¹) $\rho_{\rm{calcd}}$ (g cm ⁻³)	5.7607(6) 10.1353(11) 14.5184(16) 100.919(2) 832.33(16) 2 0.197 1.366	11.0021(6) 14.8941(9) 23.9451(14) 90 3923.8(4) 8 0.180 1.369	
Data collection θ limits (°) hkl limits No. collected reflection No. ind. refl. (R_{int}) No. observed reflection ^a	$2 < \theta < 25$ $-6, 6$; 12; $-12, -17, 17$ 8035 2910 (0.036) 2727	$2 < \theta < 25$ -13 , 13; -17 , 17; -28 , 28 38,246 6905 (0.057) 4809	
Refinement $R^{\rm b}$ ${R_{\rm w}}^{\rm c}$ No. of variables GOOF Flade parameter $\Delta \rho_{\text{min}}$ (e Å ⁻³) $\Delta \rho_{\text{max}}$ (e Å ⁻³)	0.058 0.122 212 1.285 -0.05 -0.24 0.26	0.037 0.087 510 0.961 -0.08 -0.16 0.14	

^a $F_o > 4\sigma(F_o)$.

 $E_0^2 - F_c^2 / \sum F_c^2$

 $\sum_{\rm c}^{\rm b} R = \sum_{\rm c} (F_{\rm o}^2 - F_{\rm c}^2) / \sum_{\rm c} F_{\rm o}^2$
 $\sum_{\rm c}^{\rm c} R_{\rm w} = [\sum_{\rm w} (F_{\rm o}^2 - F_{\rm c}^2)^2 / \sum_{\rm w} (F_{\rm o}^2)^2]^{1/2}$.

4.2. General protocol for the synthesis of diols 2a–c and $3a-c$

For the synthesis of $2a-c$ and $3a-c$ a sequential hydrolysis–oxidation–Grignard-reagent-addition reaction protocol has been carried out. A solution of 1 (0.8 mmol) and periodic acid (0.9 mmol) in 50 mL of dry ethyl acetate was stirred for 3 h, whereby a solid formed that was separated by filtration. Evaporation under reduced pressure afforded a colorless syrup, which was dissolved in 10 mL of dry diethyl ether and cooled to 0° C. Then, immediately the corresponding alkyl magnesium bromide (21 mmol) was added and the mixture was allowed to react for 4 h. After addition of a saturated solution of $NH₄Cl$, the product was extracted with ethyl acetate and the solution dried over $Na₂SO₄$. The residue obtained after evaporation under reduced pressure was purified by column chromatography.

4.2.1. (5R)-1,2-O-Isopropylidene-5-methyl-a-D-xylofura-nose 2a.^{[5](#page-6-0) 1}H NMR δ : 1.31 (s, 3H), 1.38 (d, 3H, J=6.6 Hz), 1.47 (s, 3H), 2.75 (b, 1H), 3.94 (t, 1H, $J=3.6$ Hz), 4.25 (b, 1H), 4.33 (m, 2H), 4.51 (d, 1H, J=3.7 Hz), 5.97 (d, 1H, $J=3.7$ Hz) ppm; ¹³C NMR δ : 19.3, 26.1, 26.7, 66.5, 75.1, 82.4, 85.2, 104.8, 111.6 ppm.

4.2.2. (5S)-1,2-O-Isopropylidene-5-methyl- α -D-xylofura-nose 3a.^{[5](#page-6-0) 1}H NMR δ : 1.29 (s, 3H), 1.33 (d, 3H, J=6.6 Hz), 1.46 (s, 3H), 2.11 (b, 1H), 2.91 (b, 1H), 3.93 (t, 1H, $J=3.3$ Hz), 4.21 (m, 2H), 4.50 (d, 1H $J=3.7$ Hz), 5.94 (d, 1H, J=3.7) ppm; ¹³C NMR δ : 20.7, 26.2, 26.8, 61.1, 76.5, 82.1, 85.6, 104.7, 111.8 ppm.

4.2.3. $(5R)-1,2-O$ -Isopropylidene-5-phenyl- α -D-xylofura-nose 2b.^{[6](#page-6-0) 1}H NMR δ : 1.24 (s, 3H), 1.45 (s, 3H), 2.87 (d, 1H, $J=5.5$ Hz), 3.20 (d, 1H, $J=4.7$ Hz), 4.00 (m, 1H), 4.32 (m, 1H), 4.50 (d, 1H, $J=3.6$ Hz), 5.0 (t, 1H, $J=4.7$ Hz), 6.01 (d, 1H, J=6.6 Hz) ppm; ¹³C NMR δ : 26.1, 26.7, 73.6, 75.4, 82.1, 85.1, 105.0, 111.8, 126.0, 128.3, 128.8, 139.2 ppm.

4.2.4. $(5S)-1,2-O$ -Isopropylidene-5-phenyl- α -D-xylofuranose $3b$.^{[6](#page-6-0)} ¹H NMR δ : 1.24 (s, 3H), 1.48 (s, 3H), 3.05 (b, 1H), 4.14 (b, 1H), 4.20 (m, 1H), 4.50 (d, 1H, $J=3.7$ Hz), 5.28 (d, 1H, J=3.0 Hz), 6.01 (d, 1H, J=3.7 Hz) ppm; ¹³C NMR δ: 26.1, 26.8, 73.7, 75.4, 82.1, 85.2, 105.1, 111.8, 126.0, 128.3, 128.8, 138.9 ppm.

4.2.5. $(5R)-1$,2-O-Isopropylidene-5-vinyl- α -D-xylofura-nose 2c.^{[7](#page-6-0)} ¹H NMR δ : 1.31 (s, 3H), 1.48 (s, 3H), 4.09 (t, 1H, $J=3.3$ Hz), 4.27 (d, 1H, $J=2.6$ Hz), 4.52 (m, 1H), 5.43 $(d, 1H, J=10.6 Hz)$, 5.52 $(d, 1H, J=17.2 Hz)$, 5.99 (m, 2H) ppm.

4.2.6. $(5S)-1,2-O$ -Isopropylidene-5-vinyl- α -D-xylofura-nose 3c.^{[7](#page-6-0)} ¹H NMR δ : 1.31 (s, 3H), 1.48 (s, 3H), 4.04 (dd, 1H, $J=4.0$, 2.5 Hz), 4.32 (d, 1H, $J=2.5$), 4.51 (d, 1H, $J=3.6$ Hz), 4.68 (t, 1H, $J=5.2$ Hz), 5.31 (dd, 1H, $J=10.6$, 1.1 Hz), 5.48 (dd, 1H, $J=17.2$, 1.1 Hz), 5.98 (m, 2H) ppm.

4.3. General protocol for the synthesis of the cyclic phosphates $4a-c$, $4a'-c'$, $5a-c$, $5a'-c'$

The synthetic protocol used for the preparation of $4a-c$, $4a' - c'$, $5a - c$, $5a' - c'$ is outlined in what follows for compounds $4b$ and $4b'$. To a solution of diol $2b$ (580 mg,

2.17 mmol) and NEt₃ (1.52 mL, 10.89 mmol) in dry CH₂Cl₂ (20 mL) a solution of PhOP(O)Cl₂ in 2 mL of dry CH_2Cl_2 was added dropwise (0.390 mL, 2.6 mmol). The reaction mixture was allowed to stir for 4 h before it was quenched with H_2O . The separated organic phase was dried over $Na₂SO₄$. After evaporation of the solvent under reduced pressure, the products were separated by column chromatography (3:1 mixture of hexane/ethyl acetate) affording 4b and $4b'$ in global yields of 50 and 45%, respectively.

4.3.1. $(5R, S_P)$ -1,2-O-Isopropylidene-5-methyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 4a. Mp=126– 127° C; ¹H NMR δ : 1.32 (s, 3H), 1.49 (s, 3H), 1.56 (d, 1H, $J=7.3$ Hz), 4.11 (dd, 1H, $J=2.2$, 4.4 Hz), 4.72 (d, $J=3.6$ Hz), 4.91 (m, 1H), 4.92 (ddd, 1H, $J=16.0$, 7.3, 2.2 Hz), 6.04 (d, 1H, $J=3.6$ Hz), 7.1 – 7.4 (m, 5H) ppm; ¹³C NMR ^d: 19.4, 26.1, 26.6, 73.6, 80.8, 93.9, 104.7, 112.7, 119.6, 125.4, 130.0 ppm; ^{31}P NMR δ : -16.2 ppm; FABS m/z 343.0936 [M+H]⁺ (calcd for C₁₅H₁₉O₇P 343.0947).

4.3.2. (5R, R_P)-1,2-O-Isopropylidene-5-methyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 4a'. ¹H NMR δ : 1.28 (s, 3H), 1.46 (s, 3H), 1.62 (d, 3H, $J=7.0$ Hz), 4.18 (q, 1H, $J=2.6$ Hz), 4.64 (d, 1H, $J=3.6$ Hz), 4.74 (ddd, 1H, $J=15.0, 7.0, 2.5$ Hz), 4.99 (dd, 1H, $J=5.8, 2.9$ Hz), 5.69 (d, H, $J=3.6$ Hz), $7.1-7.3$ (m, 5H) ppm; ¹³C NMR δ : 19.7, 26.2, 28.8, 77.3, 77.9, 81.2, 84.0, 104.9, 112.7, 120.2, 125.5, 129.7 ppm; $31P$ NMR δ : -15.0 ppm; FABS m/z 343.0936 $[M+H]$ ⁺ (calcd for C₁₅H₁₉O₇P 343.0947).

4.3.3. $(5S, S_P)$ -1,2-O-Isopropylidene-5-methyl-3,5-Ophenoxyphosphoryl-α-D-xylofuranose 5a. ¹H NMR δ: 1.31 (s, 3H), 1.48 (s, 3H), 1.55 (dd, 3H, $J=6.4$, 2.9 Hz), 4.10 (m, 1H), 4.69 (d, 1H, $J=3.6$ Hz), 4.82 (apparent d, 1H, $J=1.8$ Hz), 4.86 (broad dd, 1H, $J=6.6$, 1.5 Hz), 6.01 (d, 1H, $J=3.6$ Hz), $7.1-7.4$ (m, 5H) ppm; ¹³C NMR δ : 18.4, 26.1, 26.6, 74.4, 75.6, 82.5, 83.6, 104.6, 112.6, 119.3, 125.3, 130.1, 150.2 ppm; ^{31}P NMR δ : -15.5 ppm; FABS m/z 343.0939 [M+H]⁺ (calcd for C₁₅H₁₉O₇P 343.0947).

4.3.4. $(5S, R_P)$ -1,2-*O*-Isopropylidene-5-methyl-3,5-*O*phenoxyphosphoryl- α -D-xylofuranose 5a'. ¹H NMR δ : 0.93 (s, 3H), 1.45 (s, 3H), 1.14 (dd, 3H, J=6.6, 2.5 Hz), 3.56 (dd, 1H, $J=4.2$, 2.2 Hz), 4.16 (d, 1H, $J=3.6$ Hz), 4.45 (q, 1H, J=6.6 Hz), 4.65 (dd, 1H, J=4.1, 2.9 Hz), 5.57 (d, 1H, $J=3.6$ Hz) ppm; ¹³C NMR δ : 18.6, 26.2, 26.7, 74.3, 75.2, 82.3, 84.1, 104.6, 112.7, 120.2, 125.6, 129.7 ppm; 31P NMR δ : -12.6 ppm; FABS *m/z* 343.0938 [M+H]⁺ (calcd for $C_{15}H_{19}O_7P$ 343.0947).

4.3.5. $(5R, S_p)$ -1,2-O-Isopropylidene-5-phenyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 4b. Mp=108– 109° C; ¹H NMR δ : 1.31 (s, 3H), 1.44 (s, 3H), 4.52 (dd, 1H, $J=3.6$, 2.9 Hz), 4.78 (d, 1H, $J=3.6$ Hz), 4.95 (dd, 1H, $J=7.3$, 2.9 Hz), 5.63 (dd, 1H, $J=10.2$, 3.6 Hz), 6.01 (d, 1H, $J=3.6$ Hz), 7.2–7.6 (m, 10H) ppm; ¹³C NMR δ : 26.3, 26.8, 79.9, 81.9, 82.1, 84.0, 105.2, 112.9, 120.0, 125.6, 129.1, 129.8, 136.3 ppm; $3^{1}P$ NMR δ : -13.8 ppm; FABS m/z 405.1104 $[M+H]$ ⁺ (calcd for C₂₀H₂₁O₇P 405.1103).

4.3.6. $(5R, R_P)$ -1,2-O-Isopropylidene-5-phenyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 4b'. Mp=110-112°C; ¹H NMR δ : 1.33 (s, 3H), 1.46 (s, 3H), 4.63 (dd,

1H, $J=5.5$, 3.3 Hz), 4.82 (d, 1H, $J=3.6$ Hz), 4.92 (apparent t, 1H, $J=3.4$ Hz), 5.68 (dd, 1H, $J=11.2$, 5.5 Hz), 6.14 (d, 1H, J=3.6 Hz), 7.0–7.5 (m, 10H) ppm; ¹³C NMR δ : 26.3, 26.8, 79.1, 80.0, 81.9, 84.1, 105.3, 112.9, 119.8, 126.2, 129.0, 129.8, 136.1 ppm; ^{31}P NMR δ : -13.0 ppm; FABS m/z 405.1103 [M+H]⁺ (calcd for C₂₀H₂₁O₇P 405.1103).

4.3.7. $(5S, S_P)-1,2-O-Isopropylidene-5-phenyl-3,5-O$ phenoxyphosphoryl- α -D-xylofuranose 5b. Mp=191– 193°C; ¹H NMR δ : 1.30 (s, 3H), 1.43 (s, 3H), 4.40 (m, 1H,), 4.72 (d, 1H, $J=3.6$ Hz), 5.0 (apparent d, $J=1.8$ Hz), 5.75 (broad s), 6.02 (d, 1H, $J=3.6$ Hz), 7.1–7.5 (m, 10H) ppm; 13C NMR ^d: 26.2, 26.6, 74.8, 79.6, 82.8, 83.3, 104.8, 112.7, 119.4, 125.5, 126.6, 128.6, 129.0, 134.6 ppm; 31P NMR δ : -15.2 ppm; FABS m/z 405.1105 [M+H]⁺ (calcd for $C_{20}H_{21}O_7P$ 405.1103).

4.3.8. $(5S, R_P)$ -1,2-O-Isopropylidene-5-phenyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 5b'. Mp=138- 140° C; ¹H NMR δ : 1.24 (s, 3H), 1.30 (s, 3H), 4.42 (dd, 1H, $J=3.0$, 2.2 Hz), 4.60 (d, 1H, $J=3.6$ Hz), 5.11 (dd, 1H, $J=4.5$, 3.0 Hz), 5.61 (d, 1H, $J=3.6$ Hz), 5.84 (broad s, 1H), 7.1–7.4 (m, 10H) ppm; 13 C NMR δ : 26.2, 26.8, 75.6, 78.3, 82.8, 83.81, 104.8, 112.8, 120.3, 125.8, 126.6, 128.6, 129.0, 129.8, 134.5 ppm; ³¹P NMR δ : -12.9 ppm; FABS m/z 405.1089[M+H]⁺ (calcd for $C_{20}H_{21}O_7P$ 405.1103).

4.3.9. $(5R, S_P)$ -1,2-O-Isopropylidene-5-vinyl-3,5-O-phenoxyphosphoryl- α -D-xylofuranose 4c. ¹H NMR δ : 1.34 (s, 3H), 1.5 (s, 3H), 4.25 (broad d, 1H, $J=2.2$ Hz), 4.74 (d, 1H, $J=3.6$ Hz), 4.92 (apparent t, 1H, $J=2.5$ Hz), 5.25 (dd, 1H, $J=18.3$, 7.3 Hz), 5.42 (broad d, 1H, $J=10.6$ Hz), 5.53 (d, 1H, $J=17.2$ Hz), 6.08 (ddd, $J=17.2$, 10.6, 7.3 Hz), 6.09 (d, 1H, J=3.6 Hz), 7.1–7.4 (m, 5H) ppm; ¹³C NMR δ : 26.2, 26.6, 75.7, 80.9, 81.4, 83.8, 104.6, 112.8, 119.7, 121.4, 125.5, 129.9, 131.7 ppm; ^{31}P NMR δ : -16.4 ppm; FABS m/z 355.0932 [M+H]⁺ (calcd for C₁₆H₁₉O₇P 355.0947).

4.3.10. $(5R, R_P)$ -1,2-O-Isopropylidene-5-vinyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 4c'. ¹H NMR δ : 1.32 (s, 3H), 1.48 (s, 3H), 4.33 (dd, 1H, J=5.3, 2.6 Hz), 4.70 (d, 1H, $J=3.6$ Hz), 4.98 (dd, 1H, $J=7.7$, 2.9 Hz), 5.17 (d, 1H, $J=15.2$ Hz), 5.47 (dd, 1H, $J=10.6$, 1.4 Hz), 5.67 (dd, $1H, J=17.0, 1.8$ Hz), 5.80 (d, $1H, J=3.6$ Hz), 6.04 (ddd, $1H,$ J=17.0, 10.6, 6.2, 5.5 Hz), 7.1-7.4 (m, 5H) ppm; ¹³C NMR ^d: 26.2, 26.8, 75.8, 80.8, 81.6, 84.1, 105.1, 112.8, 120.2, 120.3, 125.5, 129.8, 131.5 ppm; ³¹P NMR δ : -15.7 ppm; FABS m/z 355.0939 [M+H]⁺ (calcd for C₁₆H₁₉O₇P 355.0947).

4.3.11. $(5S, S_P)$ -1,2-O-Isopropylidene-5-vinyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 5c. ¹H NMR δ : 1.30 (s, 3H), 1.51 (s, 3H), 4.23 (dd, 1H, $J=4.4$, 2.2 Hz), 4.69 (d, 1H, $J=3.6$ Hz), 4.89 (apparent d, 1H, $J=1.8$ Hz), 5.17 (broad d, 1H, $J=6.2$ Hz), 5.40 (d, 1H, $J=10.6$ Hz), 5.50 (d, 1H, $J=17.2$ Hz), 6.02 (d, 1H, $J=3.6$ Hz), 6.04 (dddd, 1H, $J=17.2$, 10.6, 6.2, 1.8 Hz), 7.2–7.4 (m, 5H) ppm; ¹³C NMR ^d: 26.2, 26.6, 74.1, 79.2, 82.5, 83.6, 104.8, 112.8, 119.3, 119.5, 125.5, 130.15, 131.7 ppm; ³¹P NMR δ : -15.6 ppm; FABS m/z 355.0958 [M+H]⁺ (calcd for C₁₆H₁₉O₇P 355.0947).

4.3.12. $(5S, R_p)$ -1,2-O-Isopropylidene-5-vinyl-3,5-Ophenoxyphosphoryl- α -D-xylofuranose 5c'. ¹H NMR δ : 1.28 (s, 3H), 1.45 (s, 3H), 4.24 (dd, 1H, $J=4.4$, 2.2 Hz), 4.57 $(d, 1H, J=3.6 Hz)$, 5.0 (dd, 1H, J=4.4, 2.5 Hz), 5.28 (broad d, 1H, $J=6.2$ Hz), 5.40 (d, 1H, $J=10.6$ Hz), 5.48 (d, 1H, $J=16.1$ Hz), 5.60 (d, 1H, $J=3.6$ Hz), 6.00 (dddd, 1H, $J=16.1, 10.6, 6.2, 1.8$ Hz), $7.1-7.4$ (m, 5H) ppm; ¹³C NMR ^d: 26.2, 26.8, 74.9, 77.8, 82.3, 83.8, 104.8, 112.8, 119.7, 120.2, 125.7, 129.7, 131.7 ppm; ³¹P NMR δ : -13.2 ppm; FABS m/z 355.0951 [M+H]⁺ (calcd for C₁₆H₁₉O₇P 355.0947).

Acknowledgements

We thank CONACyT for financial support, Project No. 35102 and Grants 121996, 127042 to F. S.-P. and M. S., respectively. We thank Professor Dr Jean L. Fourrey for helpful comments.

References

- 1. (a) Bentrude, W. G.; Setzer, W. N. Stereospecificity in 31P-Element Coupling: Proton–Phosphorus Couplings. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Weinheim, 1987. (b) Bentrude, W. G. Steric and Stereoelectronic Effects in 1,3,2-Dioxaphosphorinanes. In Methods in Stereochemical Analysis; Juaristi, E., Ed.; VCH: New York, 1995.
- 2. (a) Taylor, S. S.; Buechler, J. A.; Yonemoto, W. Ann. Rev. Biochem. 1990, 59, 971. (b) Revenkar, G. R.; Robin, R. K. Handbook of Experimental Pharmacology; Nelson, J. A., Kebabain, J. W., Eds.; Springer: Berlin, 1982; Vol. 58/I. Chapter 2; and references cited therein.
- 3. Nelson, K. A.; Bentrude, W. G.; Setzer, W. N.; Hutchinson, J. P. J. Am. Chem. Soc. 1987, 109, 4058.
- 4. Neeser, J. R.; Tronchet, J. M. J.; Charollais, E. J. Can. J. Chem. 1983, 61, 1387.
- 5. Valverde, S.; Hernandez, A.; Herradon, B.; Rabanal, R. M.; Martin-Lomas, M. Tetrahedron 1987, 43, 3499.
- 6. Mereyala, H. B.; Joe, M.; Gadikota, R. R. Tetrahedron: Asymmetry 2000, 11, 4071.
- 7. Horton, D.; Tsai, H. Carbohydr. Res. 1977, 58, 89.
- 8. (a) Majoral, J. P.; Navech, J. Bull. Soc. Chim. Fr. 1971, 96. (b) Crich, D.; Sartillo-Piscil, F.; Quintero, L.; Wink, D. J. J. Org. Chem. 2002, 67, 3360.
- 9. Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48, 5019.
- 10. (a) Gorenstein, D. G.; Rowell, R. J. Am. Chem. Soc. 1979, 101, 4925. (b) Gorenstein, D. G.; Rowell, R.; Findlay, J. J. Am. Chem. Soc. 1980, 102, 5077.
- 11. (a) Morr, M.; Ernst, L.; Mengel, R. Liebigs Ann. Chem. 1982, 651. (b) Hermans, R. J. M.; Buck, H. M. J. Org. Chem. 1988, 53, 2077.
- 12. Both 1,3,2-dioxaphosphorinane molecules present in the asymmetric unit have a boat conformation (a) Day, R. O.; Bentrude, W. G.; Yee, K. C.; Setzer, W. N.; Deiters, J. A.; Holmes, R. R. J. Am. Chem. Soc. 1984, 106, 103. (b) one of the 2-thio-1,3,2-dioxaphosphorinane has a half-chair conformation and the other one a twist-boat conformation Dominguez, Z. J.; Cortez, M. T.; Gordillo, B. Tetrahedron 2001, 57, 9799.
- 13. Sheldrick, G. M. SHELX86, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1986.
- 14. (a) Bruker Analytical X-ray Systems. SMART: Bruker Molecular Analysis Research Tool V. 5.057 c, 1997–98; (b) Bruker Analytical X-ray Systems. $SAINT+NT$ Version 6.01, 1999; (c) Bruker Analytical X-ray Systems. SHELXTL-NT Version 5.10, 1999.
- 15. (a) Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. W.; Cooper, T. I. CRYSTALS; Chemical Crystallography Laboratory Oxford: Oxford, 2000; Issue 11. (b) Watkin, D. J.; Prout, C. K.; Pearce, L. J. CAMERON; Chemical Crystallography Laboratory Oxford: Oxford, 1996. (c) Watkin, D. J.; Prout, C. K.; de Q. Lilley, P. M. RC93; Chemical Crystallography Laboratory Oxford: Oxford, 1994.